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STUDY GUIDE

This unit discusses some newly-developed techniques for analysing human
problem solving behaviour. These techniques are related to some of the represen-
tational systems developed in Units 26~27, but are developed with an eye towards
accounting for experimental data. The unit is divided into two parts. In the first
part, 1 discuss the way in which the structre of a problem can influence the
problem solving behaviour of groups of subjects. The structure of a problem is it-
self revealed by looking at a ‘tree’ of possible moves, comparable to the ‘trees’
you saw for the missionaries and cannibals and Fifteen Puzzle problems in Units
26-27. These trees, or “state-spaces’, as I shall call them, can serve as an ideal
skeleton upon which to build up 2 detailed account of a subject’s behaviour.

In the second part of the unit, I discuss a new modelling tool which is gaining
increasing popularity in cognitive psychology and artificial intelligence. This too]
is a new style of programming language known as production systess. Deceptively
stmple in design, production systems offer a kind of fexibility which is very
difficult to obtain in standard step-by-step programming languages like SOLO.
One of the main motivations for adopting these production systems is the ease
with which they can be used to simulate in detail the actual steps which a subject
takes in the course of solving a problem. The subject’s analysis of a problem will
be laid out in a format known as a ‘problem behaviour graph’, very similar to the
standard ‘trees’ you are already familiar with from Units 26-27, except that in
this case each node of the tree will represent the subject’s own ‘mental state’
rather than the state of pieces on the board. The Appendix starting on p 103 con-
tains two applications of production systems to problem solving tasks. The first is
the Tower of Brahma which you have already tried. The other is children’s
behaviour when learning t6 put blocks in size order (seriation task). The entire
Appendix s not set reading but you will be told when to read it and in how
much detail. The seriation task will also be discussed in detail in TV 14, so you
will find it useful to have read this section of the Appendix as background
reading.

Reading for the unit

Optional reading for this unit will be two articles in the Johnson-Laird and
Wason set book, Thinking: readings in cognitive science. The first is by Allen
Newell, one of the prime movers (along with Herbert Simon) in the develop-
ment of production systems and problem behaviour graphs as psychological
modelling tools. In the article, Newell describes in detail the analysis of the
behaviour of one subject solving a difficult problem. The second article, by Terry
Winograd, compares and contrasts several different representational formalisms,
including semantic networks and production systems. The article may help to
clarify some of the difficult interrelations among different styles of representation,
cach of which is typically (and unfortunately) geared for tackling a particular
kind of problem!

Objectives

By the time you finish reading this unit, you should be able to:

1 define a state space for a problem or game, including start and goal states, sub-
problems and sub-goal states, and sets of legal moves;

2 define and give examples of problem isomorphisis;

3 describe the use of a state space analysis to study the behaviour of subjects solv-
ing the Tower of Brahma and Parking Lot problems;



4 describe the use of the state space technique to study the effects of transfer and
changes in task instructions;

s describe a problem behaviour graph and show how it is constructed from a verbal
protocol;

6 describe a production system programming language and its use as 2 model of
short term memory and long term memory;

7 describe the use of producton systems to analyse and compare strategies in
soludons of the Tower of Brahma problem;

8 describe the use of production rules to model developmental aspects of seria-
tion tasks.



T STATE SPACE ANALYSES

In Units 26—27 you saw that the moves one makes while solving a particular
problem can be depicted in the form of a ‘tree” of move possibilities. This was
illustrated for the missionaries and cannibals and Fifteen Puzzle problems among
others. Since each node of a tree represents a particular ‘state’ of the problem, a
full-blown tree itself is often referred to as ‘state space’ (i.e. a large collection of
interconnected states).

In this section I will show how these spaces can be used not only as a con-
venient way of representing a problem inside a computer, but also as a tool which
can help us formulate hypotheses about the way in which people solve certain

kinds of problems.

1.1 Tower of Brahma and Parking Lot problems

Two of the problems we shall be looking at are included in your home games kit.
You should do both of the activities below before reading on.

ACTIVITY I

Take the Tower of Brahma from your games kit. Arrange the rings on the left-
hand peg (as you are facing the pegs), so that the largest ring {yellow) is on the
bottom, with the green ring on top of that, then the blue ring, then the red ring
as shown in Figure 1. Remove the fifth ring as you won't be using it.

Now, moving one ring at a time, and one ring only, try to move the configuration
of four rings over to the far right-hand peg, so that the rings end up in the same
order (yellow on the bottom, etc.}. You may not place any ring on top of a smaller
ring. And, of course, rings may only be placed on one of the three pegs, not
placed elsewhere on your tzble or floor, etc.

15 minutes

Figure 1
Tower of Brahma problem

$4Q 1 YOUR ANSWER (MY ANSWERS ARE ON p 124)

What was the fewest number of moves you needed to
switch the four rings? Do you think this is the
minimum number?

$AQ 2 YOUR ANSWER

Now use the same start posidon (left-hand peg) and
transfer ail the rings (by the same rules) to the middle
peg. What was the fewest number of moves you
needed? The minimum solutions for SAQs 1 and 2
are said to be symmetric. In what sense do you think
this would be so?




SAQ 3 YOUR ANSWER

Try the Tower of Brahma problem with only three
rings {green, blue, red). Starting with the rings

on the left-hand peg, move the three rings (by the
legal moves) to the middle peg. This is said to be

a subproblem of the original one you solved. In

what sense is this so?

1§ minures ACTIVITY 2

Take the Parking Lot problem from your heme kit (four small plastic “trucks’ and
a board showing a Y-shaped pattern of coloured ‘parking places’). Place the four
trucks on road A (the bottom of the Y-shape) on the squares which correspond
to the colours of the trucks {red truck on red square, etc.). Imagine now that
trucks from four delivery companies (red, blue, green, yellow) have been travel-
ling into a city on road A, and that they have been travelling in the order shown
in Figure 2 (red, blue, green, yellow). As they get into town they find that they

Plgure 2

Parking Lot problem




must park in parking places on strect C which, to simplify the loading and un-
loading of cargo, have been allocated specifically for different trucks (thus, the
red truck must park in the red square, etc.). The streets are narrow, so only cne
truck may manoeuvre at a time, and trucks can not overtake one another.
Moreover, trucks may not pause temporarily in the central (cross-hatched) area,
which is watched very closely by traffic wardens. An additional constraint is that
each of the four companies owning the parking spaces jealously guards its spaces
for its own trucks. Thus, the blue company, for instance, allows rival trucks (red,
green, and yellow), to pass over its own (blue) parking space, but it forbids rival
trucks to stop even momentarily in a blue parking space, as this might lead to lost
revenues. Similarly, each of the other companies jealously guards its own parking
space, forbidding rivals to stop in it.

Given these constraints, try moving the trucks so that they end up onroad C in
their proper parking spaces. Remember: a blue truck may only stop on a blue
space; stopping anywhere else, even momentarily, is forbidden (and similarly for
yellow trucks and yellow spaces, etc.). No overtaking is allowed, as the roads are
too narrow! Trucks may move forwards or backwards, and can be moved back
to their original positions if necessary.

SAQ 4 YOUR ANSWER

What is the minimal number of moves needed to
solve the Parking Lot problem?

You may have felt that the above problems were highly similar to one another, or
even different ‘variations’ of the same underlying problem. If so, you were right.
But what is this ‘underlying problem’? Is there any way to talk about the
relationship between the two problems other than saying that they intuitively
‘correspond’ to one another? We can, in fact, be very precise about the correspon-
dence between these two problems. This precision, as you may have suspected, is
brought about by drawing the complete tree of move possibilities and states for
both problems, and comparing the resulting state spaces. Here is how we would
draw the state space for the Tower of Brahma problem. We would begin with
the initial {or start) state, and show each of the possible states which could result
from a legal move. Figure 3 shows how the tree would develop.

start =state

state 2 state 3

Figure 3 State space diagram
depicting initial move
possibilities for

Tower of Brahma problem



Figure g4 State space diagram
showing three move possibilities
available from state 2

Thus, from state 1, we could go to cither state 2 or state 3, depending upon
where we decided to put the smallest ring. To avoid cluttering the diagram, I
haven't labelled the branches with the actual moves (i.c. ‘Red ring from left peg to
centre peg’ and so on). Now, at state 2, there are three possible legal moves: (a)
move the smallest ring (red) back to its original place (i.e. go back from state 2 to
state 1); (b) move the red ring from the right-most peg to the centre peg (i.c. go
from state 2 to state 3); (c) move the second smallest ring (blue) to the centre peg
{i.e. go from state 2 to state 4, as shown in Figure 4). So, the three lines emanating
from state 2 represent the three legal move possibilities at that point. Notice that a
line can always be traversed in both directions, so that we can go from state 3 back
to state 2, ot from state 3 back to state 1 etc. {This was also true of the lines con-
necting states in the missionaries and cannibals problem discussed in Units 26~27.)

start =state 1

state 2 state 3

state 4

SAQ S

On a sheet of paper, draw the entire state space
for the version of Tower of Brahma in which you
moved only three rings, i.e. the red, blue, and

green rings to the middle peg. As there are
twenty-seven states altogether, you may want to

turn to look at the answer after drawing six or

seven states yourself.




Rather than drawing a picture to depict each state, we can represent cach state
symbolically by labelling the pegs A, B, and C (left to right), and labelling the
four rings R, B, G, and Y, for the colours red, blue, green and yellow. Then state
1 of the Tower of Brahma could be represented as follows:

AY, G, B, R
B~
C: -
State 2, in which the red ring has been moved to the right peg, could be represen-

ted like this:
AY, G, B
B: -
C:R
This same notation can be used to depict states in the Parking Lot problem as

well, with A, B, and C standing for the roads and R, B, G and Y for the red,
blue, green and yellow trucks.

SAQ 6 YOUR ANSWER

Using the above notation, draw the entire state
space for a version of the Parking Lot problem in
which only the red, blue and green trucks are used,
and in which these trucks are moved from road

A toroad B. Compare this state space with that

for SAQ 5. {Once again, you may just want to

try drawing the first six or seven states before
turning to the answer.)

When we use the same notation to depict states in the Tower of Brahma and
Parking Lot problems, we see that the two state spaces are identicall Only the
physical details of the problems (trucks or rings etc.) are different.

When two problems can be represented by the same state space, these two
problems are said to be isomorphic. Thus, state space representations allow us to
compare different problems, to see if there is a correspondence in the underlying
structure of the problems. Moreover, we can study the problem solving
behaviour of subjects by analysing the paths which they traverse through the state
space of a problem. Paths through problems of related structures can be compared
and analysed to see to what extent the basic problem structure affects subjects’
behaviour and to what extent differences emerge due to the different superficial
details of the problem.

1.2 Problems and subproblems

The Tower of Brahma/Parking Lot problem can be broken down inte sub-
problems. For example, to solve the three-ring Tower of Brahma problem {red,
blue, green), it is necessary at some point to move the largest of the three rings
(green) from its original position on peg A to peg B. But before this can be done
the two smaller rings must be assembled in their proper order on peg C. The
problem of moving the two rings from one peg to another may be called a two-
ring subproblem, and constitutes a natural subpart of the state space of the three-
ring problem. This subpart is simply called a ‘subspace’, and is illustrated in
Figure 5 below. The entire figure depicts the complete state space for the three-
ring problem. Notice that state 27 is the solution, with all three rings on peg B.
But in the course of this solution, a two-ring subproblem was first encountered,
in which it was necessary to get the two smallest rings from peg A (at state 1) to



Figure 5 State space for
three-ring Tower of Brahwma
problem. The uppermost nine
states depict a two-ring

peg C (at state 9}, that is, to get them out of the way so that the green ring could
be moved directly from peg A to peg B. This particular two-ring subproblem
(ie. getting both the blue ring and red ring from peg A to peg C) is represented
by the subspace which is shaded in Figure 5 (1.c. the ‘mini’ state space consisting
of just states 1 through o, and ignoring all the rest). The “finish’ state of a subspace
(e.g. state 9) is simply called a subgoal.

Notice that, once the green ring is moved across from peg A to peg B (this is
the move taking us from state ¢ to state 19 in Figure 5), there’s another two-ring
subproblem to be solved: this is the subproblem of moving the two smallest rings
from peg C (state 19}, to peg B (state 27). Thus, states 19 to 27 actually constitute
another two-ring subspace. Similarly, states 10 to 18 constitute a third two-ring
subspace (state 15 is the state in which all three rings have been reassembled on the
wrong peg!}. So the three-ring state space of Figure § consists of three two-ring
subspaces. If we were to look at the state space for the four-ring Tower of Brahma
problem (which has 81 states), we would see that it consists of three three-ring
subspaces. By the way, each two ring subspace can be further broken down into
three (trivial) one-ring subspaces, comprising only three states apiece
(representing the possible moves of one particular ring). A subproblem, then, is
depicted by a subspace with its own ‘start’ and finish’ states.

There is symmetry within the Tower of Brahma/Parking Lot problems. For ex~
ample, in attempting to move the four trucks from road A to road C, problem
solvers often find themselves inadvertently transferring all the trucks to read B.
Actually, the pattern of moves to B is the same as those to C, except that B and C
are interchanged in the state space representation at every move. What often

subproblem
state 10 state19
e
A B C A B C
state 11 staie 12 state 20 state 21
| L b4 [ o] A
A B C A 8 C A B C A B C
state 13 state 14 state 22 state 23
BT A B C | A B C A B C
state 15 state 18 state 17 state18  state 24 state 25 state 26 state 27
[ | Ll Lo L Y I J L Lk | L | [k |
A B _C A B O A B C A B C A B C A B C A B C A B C




.happens, in fact, is that problem solvers learn the correct pattern of moves even
when going towards the wrong goal! The reason for this is that the partern of
moves in each case is identical.

To see how a state space is employed in analysing behaviour, let’s take a close
look at a two-ring subproblem. Set up your Tower of Brahma in its three-ring
initial state (green, blue, and red rings on the left-hand peg, which we call peg
A). Now carry out the following five moves:

1 red ring to peg C (xight peg);

2 blue ring to peg B {middle);

3 red ring to peg A (left);

4 blue ring to peg C (right);

5 red ring to peg C {right)

Let’s look at these moves in terms of the path they follow through the state space.
We only need to ook at the uppermost nine states shown in Figure s, because we
are only interested in the movement of the first two rings (hence, a two-ring sub-
problem). These states are depicted in Figure 6 (showing actual drawings of the
rings and pegs rather than cur symbolic abbreviation for the states, just to make
the diagrams easier to follow). The same analysis would apply to the Parking Lot
problem, since we have already shown that the state spaces are identical. Notice
that the pathway made by our five moves is shown by extra-thick lines in Figure
6. This is not the shortest path from the start state to state 9. The shortest path has
three moves through the subproblem space.

state 1 Figure 6 A five-move
pathway through a two-ring
subproblem space

state 2 / state 3
- SR

state 4 / state &

state € \\ state 7 state 8 state 9
A B C A B C A B C

sAQ 7

Draw the path of the three-move solution to the
subproblem considered above. Whar are the actual
moves involved?




SAQ §

Draw the following

five-move path through the
subproblem space shown in

Figure 7 (beginning at
state ¢):

I

2

3
4
3

red ring from C to B;
blue ring from Cte A;
red ring from B 10 C;
blue ring from A to B;

red ring from C to B.

Compare this path to the
five-move path through
the two-ring subproblem
shown in Fgure 6 which
is reproduced below.
These two paths are said
o be congruent. In what
sense is this so?

state 1

Bt . i
A B C
state 2 state 3
T
A B c
state 4 state 5
L
L
A C
state § state 7 state B state 8
[ 1 i
wlffiva__ .| _Aﬁ—_ﬁﬂfé -ﬂg-
A B C A B C

Figure 7 A two-ring subproblem space

Hint: Turn Figure 7 sideways so that state 9 is at the top of the page. Are all the three-move minimum paths
through these subspaces also congruent {with one another, that is)?

state 1

state B

\ state 7

state &

state § /

N




1.3 The path of a subject through a state space

Any subject trying to solve the four-ring Tower of Brahma or the four-truck
Parking Lot problem will inevitably take some path through the complete 81-
state state space (as this defines all possible states a subject can reach). The
behaviour of the subject which is available to our observation consists of the par-
ticular path he or she happens to take and the amount of time needed for each
move from one state to another. If we focus on the formal properties of the state
space, we can begin to think about certain aspects of the problem structure which
have an effect on the observable behaviour of a subject. In my own research (¢.g.
Goldin and Luger 197s; Luger 1976), this emphasis led to the formulation of the
following kinds of hypotheses (note that these hypotheses are not murually
exclusive, but rather represent a body of independent predictions based on the
structure of the Tower of Brahma/Parking Lot state space):

Hypothesis 1

In solving a problem {or subproblem) the subject follows a goal-directed path in the
state space representation of the problem (or subproblem).

Hypothesis 2

Whenever a subgoal state is reached, the path exits from the subspace of the just-
completed subproblem. For example, in Figure 5 on p 68, once statc 9 has been
reached the path of the problem solver should go on to state 19, rather than states
5 or 8, which are both still within the subspace of the just-completed two-ring
subproblem.

Hypothesis 3

Identifiable “stages’ occur during problem solving correspondence to the solution
of various subproblems. That is, path segments occur during problem solving
which do not make up the direct solution of a problem, but which are direct solu-
tions to subproblems.

Hypothesis 4

The problem solver’s paths through isomorphic subproblems tend to be con-
gruent {i.c., the same shape, as discussed in the answer to SAQ 8).

Hypothesis 3

When symmetries exist within the state space of a problem (as discussed on p 68},
subjects tend to produce successive path segments that are symmetric to each other
{i.e., 2 mirror image path).

These hypotheses are not an exhaustive list, but indicate the kind of analysis
possible of the effects of probiem structure on the problem solver’s behaviour.
Let’s take a more detailed look at how these hypotheses can be tested.
Hypothesis 1 spoke about goal-directed paths. In terms of the state space
representation, we can say that a path is goal-directed as long as there are no
moves along the path which take the problem solver from one state to another
which is further from the goal (i.c. as long as no ‘harmful’ moves occur). We can
determine this by giving each state a score which reflecss its shortest distance (in
rumber of moves) from the final goal {or subgoal, if we are looking only at a
subproblem). These scores are illustrated below for the three-ring subproblem
you solved for SAQ 3, i.e. moving the rings to the middle peg. The score of 5 for



state 8, for instance, means that you can get from state 8 to the goal (state 27) in §
moves at best. Obviously, more circaitous pathways might require more moves,

Figure 8 A three-ring subproblem space, showing scores for each state (i.e. distance from goal state 27)

state

i

{score

=7

state 2 state 3
% B C A B C
[} (6)
state 4 state 5
A B C A B.C
(] (5
state 6 state 7 state 8 state 89
A B C A BT A B C A B C
(7 (63 [E3] (4
state 10 state19
b L
A B C A B C
&l / 3
state 1] state 12 state 20 state 21
4L | 4l N
A B € A B C A B C A B C
{7) {8) {3) (2}
state 13 state 14 state 22, state 23
4 ] A 2 14
A B C A B C A B C A B C
state18 state i 6 state 17 state18  state 24 state25  state 26 state 27
N [ o 4 ) A L e | Ny [ =
A B C A B C A B C A B C A B C A B C A B C A B C
(72 [ {5) {4} {2y [#3) m (stora = )
SAQQ YOUR ANSWER

The scores shown above are very similar to the
‘evaluation function’ scores for the Fifteen Puzzle
discussed in Units 26—27 section 3.3. There Is,
however, one vital difference. Can you see what
this difference is? (Hint: compare the way in which
scores are calculated for the states in the Fifteen
Puzzle with the way in which scores are calculated
for states in the Tower of Brahma puzzle.)

Opposite are two pathways made by two subjects solving the three-ring Tower
of Brahma problem:
The successive distances from the goal (state 27) are:

for path 1 (shown by thick lines in Figure 02): 7,7 7s 7+ 7- 65 5, 4+ 35 3. 3, 2, 1, O

for path 2 {in Figure 9b): 7. 6,5, 5.6, 7.7. 7. 7 6, 5, 4. 3, 2, L, O.

Since the measure on path 1 is non-increasing {always stays the same or decreases)
we can describe this path as goal-directed.



Figure 9 Pathways through
a three-ring state space

(a) path 1
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SAQ TO . YOUR ANSWER
Is path 2 goal-directed? If not, why not?

SAQ II YOUR ANSWER

Consider the same measure and use it for evaluating
subgoal-directed paths. Path 1 in Figure oa goes
through three two-ring subproblems.

(a) Is path 1 subgoal directed within each of these
subproblems?

(b} Can a path be subgoal-directed for each
subproblem entered and not be goal-directed over
the entire path? (Check this for path 2 in Figure gb.)

After a subgoal state is encountered, the path that continues on from a subgoal
state can be examined to see if it also happens to exit from the entire subspace of
the just-completed subproblem (it might not, of course, if the path doubles back
to remain within the same subspace). Intuitively, this means that a subject uses the
subgoal as a partial goal of the problem; that is, once arriving at the subgoal, the
subject leaves it and goes on to the rest of the problem, rather than staying within
the subproblem (this is hypothesis 2).

In fact, the five hypotheses listed on p 71 can be analysed in the light of data
from subjects solving the Tower of Brahma and Parking Lot problems.

Figure 10 pictures the actual paths through the state space of one adult subject
solving the Tower of Brahma problem. It took three trials for the subject to find
the shortest solution. All three trials are illustrated n Figures 10a, b and ¢. Note
the following observations.

a All three paths are both goal- and subgoal-directed.

b All three paths always exit completely from a subproblem whenever a subgoal
state is exited.

Figure 10 Pathways of one subject through a four-ring state space
(a) wrial 1

state 1ALy Q. bor
g~

Ci-

athres ring
sub-problom

athroaring
sub-prohlem



¢ The first two trials contain seven instances (out of seven attempts) of
minimum solutions of two-ring subproblems, while no three-ring subproblems
were solved by the shortest path on those furst two trals. I refer to this as a two-
ring subproblem ‘stage’ i.c. a stage in the course of the development of the
problem solver’s expertise on this problem — in this case the subject solves two-
ring subproblems perfectly, but still has trouble with three-ring subproblems.

d Trial 1 illustrates two identical {congruent) non-minimum paths through
three-ring subproblems.

e Finally, trial 2 is interrupted and trial 3, the solution path, follows. Notice that
trial 3 is the symmetric opposite of trial 2.

(b) ff'ia] 2 slale‘i:g\i!,g,b.r

(C) t?’fﬂl 3 sxa‘e'azg::z.g.h‘r




Figure 11 Pathways of one
ubject through a four-truck
tate space

Figure 11 {a — d) pictures the paths (four trials) of another adult subject solving
the Parking Lot problem. Note the following observations:

f Two of the paths within the problem are not goal-directed (i.e. trials 1 and 2
— Figures 112 and 11h).

g The paths exit from a subproblem whenever a subgoal state is exited, with
one exception: in the shaded two-truck subproblem of trial 2, the move pointed
to by the arrow follows the attainment of a subgoal state (striped box), yet
fails to exit from the subproblem space.

h  The subject solves five of the last six three~-truck subproblems in the minimum
number of steps; this is a three-truck subproblem stage.

i The third trial is interrupted, and its symmetrically opposite path -~ which
solves the problem -- is produced in the fourth trial.

(ﬂ) trial 1 . sl Ay.g 0

Cim

(b) wial 2

a 2-truck L
sub-problem o



[e) trial 3 uate 1Ay 8B

(d) trial 4

5AQ 12 observation relevant hypothesis supported?
Ignoring statistical analyses for the moment, compare a I yes
observations a—i above with the five hypotheses b

mentioned on p 71, and work out whether the

observations support or refute the various hypotheses. ¢

You can do this by completing the table: d

== T ()

-




1.4 Experiments based on state space analysis

The analyses above reflect certain regularities in subjects’ behaviour which can be
attributed largely to the underlying structure of the problems. Other researchers
have used state spaces to investigate different aspects of problem solving
behaviour. There are many interesting questions which can be asked about the
pathway made by a subject through a state space in the course of solving a
problem. For instance, how long does a subject spend in making a transition
from one state to another? Do transitions between subproblems take noticeably
longer? Does experience on a given problem make it easier for subjects to solve
new problems which are isomorphic to the original? How do different kinds of
task instructions affect the solution time {and pathway) of subjects through a
given state space? The highlights of several key studies which raise some of these
questions are presented below.

EXPERIMENTS BASED ON STATE SPACE ANALYSIS
Study: Thomas (1974)

Buasic problem used
Missionaries and cannibals {(see Units 26—27, section 2).

Variation of problem
Hobbits and orcs used instead. This is the identical problem with missionaries
replaced by hobbits and cannibals replaced by orcs.

Purpose of study

To seec whether a state space provides the right psychological level of analysis —
i.e. do the eleven states of the problem correspond more or less to stages which
subjects go through mentally while solving the problem?

Method

One group of subjects first solved the problem starting from the middle (i.e. the
‘tricky” state labelled (i} on p 17 of Units 26-27), then solved the entire problem.
A control group just solved the whole problem once.

. Hypothesis

If the state space is the correct level of analysis, then any improved performance
by experimental subjects on the entire problem (as compared against the perfor-
mance of control subjects) should only occur on the second half of the problem,
because only the states in the second half had been previously encountered.

Measurements used
Number of moves required to find solution; time per move; number of erroneous
moves attempted.

Results

Improved performance by the experimental group only occurred on the first half of
the problem, while performance on the second half was in fact slightly (but not
significantly) worse! The hypothesis was thus rejected. Other analyses showed
that subjects respond to states very differently if they ever happen to enter a state a
second time in the course of a single solution — however, a simple state space analysis
would not have predicted this. Also, ime measurements revealed three or four
major stages in the course of the subjects’ sclutions, rather than the eleven equally
spaced stages (one for each state) predicted by state space analysis.

Implications
(a) State space analysis may serve as a useful underlying framework for carrying
out experiments like this one, but the states themselves don’t seem to correspond



to the subjects’ mental stages, at least on this particular problem.

(b) The difficulty of the ‘tricky’ state encountered in the problem might be ex-
plicable in terms of transitions between more global stages in the sclution, rather
than simply the subjects thinking that the next move leads to a state which is a

blind alley.

Study: Reed, Ernst, and Banerji (1974)

Basic problem used
Missionaries and cannibals ("MC’)

Variation of problem

Both missionaries and cannibals, and the following variation were used: Jealous
Husbands’ problem (‘JH’), in which missionaries are replaced by husbands and
cannibals by wives, with the additional constraint that husbands and wives must
always be paired, in the sense that a lone wife cannot be left with a husband
without his wife being present. The state space for this variation is identical to
that for MC if only legal moves are considered, but this variation has many more
possible illegal moves, because of the pairing rule (a relationship of this type bet-
ween two state spaces is called homomorphic).

Purpose of study
To see whether skill acquired in performing one task could be ansferred to an
analogous (but not identical) task.

Method

Subjects solved two problems ~ either MC then MC; or JH then JH; or MC then
JH; or JH then MC. Ir addition, some subjects in the last two conditions were ex-~
plicitly told about the reladonship between the two problems.

Hypothesis

Subjects first solving one problem and then the other (i.e. MC then JH or JH then
MC) will show improved performance on the second one because of the close
correspondence between problem states.

Measurements HSEd

Total dme for solution, total number of moves involved, number of illegal moves
attempted.

Results

MC then MC: improved performance (fewer moves).

JH then JH: improved performance (fewer moves and faster solution).

MC then JH: no improvement, even when relationship explicitly revealed by ex-
perimenter.

JH then MC: improvement only when relationship explicitly revealed by
experlmenter.

Implications

Subjects can clearly capitalize on previous experience of an identical problem (e.g.
MC then MC again), bur to capitalize on experience with an analogous problem,
they must not only recagnize the analogous relationship, but must also be able to
put this relationship to effective use essentially by reducing the total number of
operations they would otherwise spend time considering. Hence the improvement
for TH then MC (where the recognized relationship makes the MC problem sim-
pler), and the failure of improvement for MC then JH (where the recognized
relationship doesn’t particularly help, because the new JH problem is still too
complex).




Study: Luger and Bauer (1978)

Basie problem used
Tower of Brahma (TOB)

Variation of problem

Tea Ceremony (TC) — this problem is isomorphic to the Tower of Brahma
problem. Its verbal description is more complicated, but the physical layout of the
problem, as set up by Luger and Bauer, is very similar to the Parking Lot
problem you were given on pp 64—s.

Purpose of study

To see whether skill acquired performing one task could be transferred to a second
isomorphic task, particularly where the tasks have a nice subproblem structure
{unlike missionaries and cannibals which can’t easily be broken down into
subproblems).

Method

Subjects solved cither TOB then TC or TC then TOB. They were not told that
the two problems were related.

Hypothesis

The isomorphic relationship, combined with the relatively clear structure of the
problem and the lack of ‘tricky’ states, would lead to a wansfer of skill, reflected
in improved performance on the second task.

Measurements used
Total time to solution; number of states entered; number of illegal moves
attempted.

Results

TOB then TC: improved performance
TC then TOB: improved performance
Hypothesis accepted.

Implicarions

Clear subproblem structure, as well as subjects’ ability to experience overall
problem symmetry, can enhance transfer of skill from one task to another. The
lack of clear subproblem structure could account for the lack of transfer on some
of the conditions in the Reed, Ernst, and Banerji study discussed above.

Study: Hayes and Simon (1976)

Basic problem used
Tower of Brahma (three-ring version)

Variation of problem

Several isomorphic variations in which the rules of the puzzle specified legal
moves in terms of size changes {e.g. magical shrinking monsters), hereafter
referred to as ‘change’ variations. Other variations stuck to the idea of physically
transferring items form one place to another (hereafter referred to as ‘transfer
problems).

Purpose of study

To examine the consequences of different verbal formulations of a given problem
in order t¢ gain some insight into how problem statements are initally un-
derstood by problem solvers.



Method
Subjects solved either

{a) a transfer problem and then a change problem; or
(b) a change problem and then a transfer problem; or

(c) two transfer problems which differed according to whether the monster was
the agent (instigator) of the transfer or the patient (victim) of the transfer; or

(d) two change problems which differed according to whether the monster was
the agent or patient of the change.

Hypothesis

Even when all the problems used are isomorphic, different task instructions
should cause significant differences in problem difficulty (as reflected in solution
time), and also in the subject’s own internal representation of both the problem
states and the legal operators (legal moves).

Measurements wused
Time to solve problem; verbal protocols {‘thinking out loud’).

Results _

Transfer problems were solved much more quickly then change problems. Im-
proved performance on the second of each pair of problems was much more evi-
dent when the same basic problem was used (i.e. transfer-patient vs transfer-
agent) than when there was a switch from ‘transfer’ to ‘change’ or vice versa. All
variations had a strong influence on the representations adopted by the subjects
when attempting to solve the problems (as revealed by their verbal protocols).

Implications :
Problem structure alone, as reflected in the state space, isn’t enough to predict the
kinds of difficulties a subject may have in solving a problem. The task of ‘un-
derstanding’ the problem itself, i.e. adopting some internal representation of the
states and the operators, will have a drasdc effect on the solution process, because
some representations may involve much simpler processing operations than
others. This research has been followed up with a computer program called
UNDERSTAND which simulates the process of building internal representa-
tions of a problem which differ for different task instructions (Simon and Hayes

1976).






